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Abstract. Analysis of the dynamic structure factor,S(Q,E), measured by means of inelastic
neutron and x-ray scattering, for vibrations around the boson peak in glasses, demonstrates the
presence of coherent- and random-phase contributions. It is found that systems with strong boson
peaks have larger random-phase contributions toS(Q,E). The results of the analysis are explained
in terms of a model which relates the boson peak to scattering of acoustic-like vibrations by spatial
fluctuations of elastic constants. Higher amplitude of the fluctuations leads to a higher boson peak
and a larger random-phase contribution.

The most pronounced difference in dynamics between ordered crystals and disordered systems
like glasses appears in the frequency range∼1 GHz to 1 THz. This region in ordered
crystals is usually dominated by acoustic vibrations which show a Debye-like density of states
gD(E) ∝ E2. Two additional contributions show up in this frequency range for all glasses. One
is an excess (in comparison withgD(E)) density of vibrational states,gexc(E) = g(E)−gD(E).
Hereg(E) is the total vibrational density of states. The second is the anharmonic contribution
which is traditionally ascribed to tunnelling systems or relaxation in double-well potentials
[1]. The excess vibrations appear as a peak ofg(E)/E2 at frequencies around 0.3–1 THz. This
is called the boson peak and is observed in neutron and Raman scattering spectra of glasses.
The amplitude of the boson peak, defined as the ratiogexc(E)/gD(E), is high for covalently
bonded systems like SiO2 or B2O3, intermediate for hydrogen-bonded systems like glycerol
and small for Van der Waals and ionic systems, like orthoterphenyl (OTP) and Ca–K–NO3

(CKN) [2]. Moreover, the amplitude of the boson peak correlates with the degree of fragility
of the system [2]. Fragility is a characteristic of the temperature variation of the viscosity
(or α-relaxation time) around the glass transition temperatureTg. Recent investigations [3]
revealed the existence of a boson peak in an orientational glass, i.e. in a crystalline solid
with orientational disorder. Thus the boson peak is not something observed only in structural
glasses. The nature of the excess vibrations and where they come from are currently subjects
of intensive discussion.

The nature of the vibrations at the boson peak is revealed by analysis of the dynamic
structure factorS(Q,E). S(Q,E) contains information about the type, propagation and local-
ization of the vibrational modes. A significant advance in the measurements ofS(Q,E) for
glasses was made following recent developments in high-resolution inelastic x-ray scattering
spectroscopy (IXS). IXS makes possible Brillouin measurements in theQ-range 0.1–1 Å−1.
These measurements reveal the existence of a linear dispersion betweenE and Q, for
longitudinal vibrations, up to energies far above that of the boson peak [4–6]. The slope
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of a dispersion curve gives a value for the velocity of sound in good agreement with the results
of traditional light scattering Brillouin measurements [4]. Results from IXS measurements
gave strong support for the proposal of an acoustic-like nature of the vibrations at the boson
peak.

Traditionally,S(Q,E) is measured using inelastic neutron scattering spectroscopy (INS).
INS is not very efficient at Brillouin conditions due to kinematic limitations and is used most
profitably around the first and second diffraction maxima,Q ∼ 1–5 Å−1. It was shown
[7] that for random-phase motion of atomsS(Q,E) ∝ Q2, whereas for long-wavelength
sound wavesS(Q,E) ∝ Q2S(Q, 0). HereS(Q, 0) is a static structure factor. In a plane-
wave approximationS(Q,E) for acoustic modes should oscillate in phase withS(Q, 0) [7].
Analysis of the dynamic structure factor for SiO2 clearly demonstrates an absence of oscillation
nearQ = Qmax ∼ 1.5 Å−1 [8]. This means that the random-phase contribution dominates
S(Q,E) at energies near the boson peak. The absence of oscillation is a strong argument
against a sound-like picture for the vibrations at the boson peak in SiO2 [8].

Figure 1. Neutron scattering data forS(Q,E) for B2O3 atT = 100 K, from [10]. (a) The static
structure factor. (b) Symbols—the dynamic structure factor, measured at the values ofE given in
the figure.EBP ≈ 2 meV. The curve in (b) shows the dynamic structure factor expected for sound
waves,S(Q,E) ∝ Q2S(Q, 0).

Recent analysis ofS(Q,E) for polybutadiene (PB) [9] and B2O3 [10] reveals oscillations
near the first diffraction maximum. Figure 1 presentsS(Q,E) for B2O3 at low temperature
where quasielastic scattering is weak. At energies below the boson peakS(Q,E) is similar
to Q2S(Q, 0) expected for sound waves. This means that the coherent-phase contribution
dominatesS(Q,E) at this energy range. However, the oscillation becomes less pronounced
with increase ofE and nearly disappears at energies above that of the boson peak (figure 1(b)).
The ratio of the random-phase contribution to the coherent-phase contribution increases with
the energy. The authors of [10] decomposedS(Q,E) into two parts and estimated the density
of vibrational states for both phases (figure 2). At the energy of the boson peak, the coherent-
phase contribution exceeds the expected Debye level for the sound waves (figure 2). However,
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Figure 2. Total (•), coherent-phase (N) and random-phase () parts of the vibrational density of
states in B2O3 atT = 100 K, from [10]. The dashed line shows the Debye level. The ratio of the
random-phase contribution to the coherent-phase contribution increases withE, as shown by the
solid curve.

the ratio of the random-phase contribution to the coherent-phase contribution increases rapidly
with energy.

Comparison ofS(Q,E) for different systems demonstrates that the ratio of the random-
phase contribution to the coherent-phase contribution atE near the boson peak varies: it is
very high for SiO2, which has an extremely high amplitude of the boson peak,gexc(E)/gD(E),
and it is much lower for B2O3 and PB, which show some intermediate strength of the boson
peak. Does the amplitude of the boson peak correlate with the amount of the random-phase
contribution? Analysis ofS(Q,E) for fragile systems with relatively weak boson peak (like
CKN or OTP [2]) can help to answer this question.

Figure 3. The internal friction for the Brillouin line in IXS measurements versus energy scaled
with respect to the energy of the boson peak maximum,EBP . : SiO2 at T = 1100 K [4],
EBP = 5 meV;N: glycerol atT = 292 K [5], EBP = 2.9 meV;•: OTP atT = 156 K [6],
EBP = 1.45 meV. The dashed line marks the level0 = E/π , i.e.L = λ.

Can one also identify the random-phase contribution in Brillouin scattering measure-
ments? In general, this random phase will give strong broadening of the Brillouin line and a
flat background under the Brillouin line. The broadening is often characterized by an internal
friction defined asQ−1 = 0/E. Here0 is the full width at half of the maximum. Figure 3
presents the internal friction data versus energy scaled with respect to the energy of the boson
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peakEBP , for a few different systems. First of all, the broadening increases with the energy
of the mode. This is consistent with the conclusion drawn from the analysis of the INS. The
random-phase contribution increases with increase ofE (figures 1, 2). Even more important is
the comparison of different systems. SiO2 has the largest and OTP has the smallest broadening,
while that for glycerol is intermediate. This broadening correlates with the amplitude of the
boson peak [2]. Thus the analysis of IXS and INS data leads us to a consistent picture: the higher
the boson peak, i.e. the highergexc(E)/gD(E), the larger the random-phase contribution to the
dynamic structure factor. At energies below that of the boson peak, vibrations have sound-like
character, but random-phase contributions strongly increase with the energy of the vibration
(figures 2, 3). Does every vibrational mode have both random and coherent parts in its response
or one can separate the modes into purely coherent and purely random modes (as suggested in
the vibration-relaxation model [9])? The results presented here do not answer this question.
Results of computer simulations [11] seem to show the presence of a random phase for every
mode.

What kinds of vibration are the modes at the boson peak? Earlier it was noted [12] that
temperature variations of the boson peak frequency usually follow temperature variations of
the sound velocity. That was an argument in favour of acoustic-like vibrations. Recent IXS
data gave additional support to this point of view. Results of computer simulations [13] also
indicated acoustic-like character for the vibrations near the boson peak, although the presence
of a weak optic-like character for the vibrations was noted.

Recent analysis of INS and specific heat data for ethanol demonstrates that the boson peak
can appear for orientational glass [3]. The peak was found to be identical to the boson peak for
the structural glass of ethanol. This result demonstrates that fluctuations of elastic constants
are sufficient for the appearance of the boson peak. The same conclusion can be drawn from
the recent theoretical analysis presented in [14]. The authors demonstrate that fluctuations of
the elastic constants of a simple cubic lattice (i.e. once again of a crystalline solid) lead to the
appearance of an excessg(E) at small energies similar to the boson peak for glasses. The
amplitude of the peak increases with increase of the amplitude of the fluctuations of the elastic
constants [14].

The results presented above agree well with the model approach which relates the boson
peak to strong scattering of acoustic-like vibrations by fluctuations of elastic constants [2, 15].
This scattering leads to a shift of the vibrational response to lower frequencies. As a result
an excessg(E) appears in the low-frequency range. Higher amplitude of the fluctuations
leads to a stronger scattering process and a larger shift of the vibrational response. As a
resultgexc(E)/gD(E) will be higher [2]. Strong scattering will also give a larger random-
phase contribution to every vibrational mode. That explains the observed relation between the
amplitude of the boson peak and the size of the random-phase contribution (figure 3). It is
also evident that vibrations with wavelengthsλmuch longer than the characteristic size of the
fluctuations of the elastic constants are scattered very weakly. Decrease ofλ leads to stronger
scattering. As a result, the random-phase contribution will increase with increase of the energy
of the vibration.

According to this picture, the correlation of the fragility of the systems with the boson
peak amplitude can be interpreted as a correlation with the heterogeneity of the sample. Fragile
systems have more homogeneous structure. As a result the boson peak is rather weak. This
interpretation seems to be reasonable if one compares the structure of strong versus fragile
systems. Strong systems usually have rigid covalently bonded structure which can support
strong fluctuations of elastic constants. Fragile systems, in contrast, have Van der Waals or
ionic structure where any strong fluctuations will be smoothed out.

Another simple consequence of the suggested picture is stronger localization of the
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vibrational modes in systems with higher heterogeneity. It is very difficult to measure the
localization of the vibrations at the frequency of the boson peak. One can estimate the local-
ization length from the width of the Brillouin lines in IXS measurements (figure 3). The
dashed line in figure 3 shows the level at which the mean free pathL ∼ λ. It is clear from
figure 3 that the vibrations in SiO2 have the shortest mean free path. At all energies around and
above that of the boson peak,L is shorter than the wavelength. There is intensive discussion
in the literature about the propagative/localized character of the vibrations at the boson peak
in SiO2 [4, 16]. The above estimates lead us to speculate that the modes in SiO2 are neither
propagating nor localized, becauseL 6 λ but still has a finite value. The term ‘quasilocal
vibration’ seems appropriate. In the case of glycerol,L becomes comparable withλ near the
boson peak energy, whereas in the case of OTP,L reachesλ atE nearly twiceEBP (figure 3).
This result contradicts the widely accepted view that the localization of the vibrations meets
the Ioffe–Regel criterion just at the boson peak frequency.

Figure 4. Thermal conductivity of SiO2 and CKN, from [17]. No ‘plateau’ is observed for CKN.

One can also get rough estimates ofL from the thermal conductivityκ. The energy range
of the boson peak corresponds to the well-known ‘plateau’ inκ at temperatures between 1
and 10 K [1]. Stronger scattering of the vibrations should give a more pronounced plateau in
κ. This suggestion is, indeed, consistent with the literature [17]: the plateau is usually well
pronounced for strong glasses which have a high boson peak and the plateau does not appear
for a fragile system like CKN which has a very weak boson peak (figure 4).

In conclusion, the combined analysis of the IXS and INS data demonstrates the presence
of random- and coherent-phase contributions toS(Q,E). The random-phase contribution
increases strongly with the energy of the vibration. Moreover, it is found that the systems for
which the amplitude of the boson peak,gexc(E)/gD(E), is higher have larger random-phase
contributions toS(Q,E). This observation can be explained with a model which assumes
that strong scattering of sound waves by spatial fluctuations of elastic constants is the main
cause of the boson peak in disordered systems. It is clear that more detailed analysis of the
dynamic structure factor for different glass-forming systems is needed in order to check the
suggested relation between the random-phase motion and the amplitude of the boson peak.
More detailed theoretical investigations of the vibrational modes in disordered systems are also
important. The approach used for analysis of the dynamic structure factor [7] gives predictions
for long-wavelength sound waves with mean free paths much longer than the wavelength. For
most of the modes near the boson peak, however, the mean free path is of the order of or even
shorter than the wavelength (figure 3). It is not clear how the predictions of the model [7] will
be changed in the case of a strong localization, i.e. when the mean free path is shorter than the
wavelength.
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